Desarrollo de aplicaciones a la medida con apoyo de modelos GPT
Main Article Content
Abstract
Based on the need to improve productivity in custom application development, experts at Dirección General de Cómputo y de Tecnologías de Información y Comunicación explored different methodologies, techniques and tools. It was reviewed that GPT models contribute to improve the learning curve of custom application developers in programming frameworks and languages, thereby reducing the development time of the various software components that make up custom applications. This report explains the elements that can be integrated into the design of the prompt or request and how the prompt can be refined so that GPT models provide better responses that are easier to integrate into the application under development and less complex in their logic. The complexity of the components was taken into account using the Laravel Sail Insights tool. It was concluded that applying generative Artificial Intelligence GPT models reduces the construction time of functions, components and software components, as well as the number of issues to be solved. Furthermore, issues detected by the software quality assurance team are dealt with in less time. An experienced developer can design the best prompts to elicit the best responses from GPT models and analyze the results to decide whether to incorporate the generated code, while also taking into account the ethical framework of copyright issues.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Este trabajo tiene la licencia CC BY-NC-ND 4.0
References
Stack Overflow Developer Survey. (s.f). Recuperado el 15 de enero de 2025, de https://survey.stackoverflow.co/2024/
Brown, T., Mann, B., et al. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 1877–1901. https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
Degli-Esposti, S. (2023). La ética de la inteligencia artificial. Los Libros De La Catarata.
De, las H. del D., Rafael, Alonso, Á. G., & Carmen, L. G. (2018). Métodos Ágiles. Scrum, Kanban, Lean. Comercial Grupo ANAYA, S.A.
Dev, L. M. (2020, agosto 7). Return Early Pattern. The Startup. https://medium.com/swlh/return-early-pattern-3d18a41bba8
Developers warned: GitHub Copilot code may be licensed | TechTarget. (s/f). Search Software Quality. Recuperado el 24 de marzo de 2025, de https://www.techtarget.com/searchsoftwarequality/news/252526359/Developers-warned-GitHub-Copilot-code-may-be-licensed
iac. (2024, julio 24). Microsoft Copilot con GitHub: ¿Cómo funciona? Ingeniería Asistida Por Computador. https://www.iac.com.co/microsoft-copilot-con-github/
Jarrell, G. (s.f). Chatgpt: Hacia Una Nueva Conciencia La Ingeniería De Prompts Para Chatgpt Que Va a Hacer De Ti El Genio Que Quieres Ser (La Superinteligencia Y Cómo Chatgpt Está Cambiando El Software La Comunicación Y La). Gordon Jarrell.
Javier Garzás en LinkedIn: ¿MIEDO subir tus datos a una IA? Pues instálate una en local, sin acceso…. (s.f). Recuperado el 15 de enero de 2025, de https://es.linkedin.com/posts/jgarzas_miedo-subir-tus-datos-a-una-ia-pues-instalate-activity-7272954391580594176-uee_
Martí, M. A., Antonín, M. A. M., Llisterri, J., & Boix, J. L. (2002). Tratamiento del lenguaje natural: Tecnología de la lengua oral y escrita. Edicions Universitat Barcelona.
Martin, R. C. (2018). Arquitectura limpia. Editorial Anaya.
Martínez, R. N. (2015). El Proceso de Desarrollo de Software. IT Campus Academy.
Ramana, T. V., Ghantasala, G. S., Sathiyaraj, R., & Khan, M. (2024). Artificial Intelligence and Machine Learning for Smart Community: Concepts and Applications. CRC Press.
Reilly, E. (2024). The No-Code Startup: The complete guide to building apps without code. Practical Inspiration Publishing.
Robisco, S. (2024). Historia de la Inteligencia Artificial. Guadalmazán.
Solohubov, I., Moroz, A., Tiahunova, M. Y., Kyrychek, H. H., & Skrupsky, S. (s/f). Accelerating software development with AI: exploring the impact of ChatGPT and GitHub Copilot. CEUR Workshop Proceedings, 3679, 76-86. https://ceur-ws.org/Vol-3679/paper17.pdf